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Abstract
A succinonitrile (SCN)–3.6 wt% acetone (ACE) alloy was unidirectionally
solidified with a constant temperature gradient G = 5.7 K mm−1 in the growth
rate ranges V = 6.5–113 µm s−1 and a constant growth rate V = 6.5 µm s−1

in the temperature gradient ranges G = 3.5–5.7 K mm−1. The primary dendrite
arm spacings, secondary dendrite arm spacings, dendrite tip radius and mushy
zone depth were measured as a function of growth rate and temperature gradient.
Theoretical models for the dendrite arm spacing and tip radius have been
compared with the experimental observations, and a comparison of our results
with the current theoretical models and previous experimental results has also
been made. The stability constant (σ ) for this alloy system was measured and
this result was compared with various similar organic transparent alloys.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last 40 years, the formation of dendrite arms during solidification has been studied
extensively, and several studies [1–5] of directional solidification under steady-state conditions
have been applied to dendritic growth in alloy systems. Dendritic growth is the ubiquitous
form of crystal growth encountered when metals, alloys and many other materials solidify
under low thermal gradients, a situation which typically occurs in most industrial solidification
processes [1]. A dendrite structure is characterized by its microstructure parameters. Numerous
solidification studies have been reported with a view to characterizing primary dendrite arm
spacing (λ1), secondary dendrite arm spacing (λ2), dendrite tip radius (R) and mush zone depth
(d) as a function of growth rate (V ) and temperature gradient (G) ahead of the microscopic
solidification front [5–19]. The effect of growth rate (V ) on the primary dendrite spacing (λ1),
dendrite tip radius (R) and mushy zone depth (d) in various directionally solidified alloys was
investigated in [15–19].
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Recent empirical [6–9] and theoretical [10–12] studies have claimed the existence of
an allowable range of stable spacings. This has been interpreted in such a way that no
unique spacing selection criterion operates for λ, and an array with a band of spacings is
stable under given experimental conditions. A literature survey shows several theoretical
studies [5, 11, 20–31] and theoretical models [23, 26] and [32–37] used to examine the
influence of solidification parameters (G, V ) on microstructure parameters (λ1, λ2, R and d).
The majority of results in the literature show a decrease in microstructure parameters with
increasing V and G.

The goal of the present work was to experimentally investigate the dependency of λ1,
λ2, R and d on V and G in a directionally solidified succinonitrile (SCN)–3.6 wt% acetone
(ACE) binary transparent system and to compare the results with the current theoretical
models [23, 26, 32–39] and previous experimental results [6, 15–17, 40–56].

1.1. Primary dendrite arm spacings

Hunt [32] and Kurz and Fisher [33] have proposed theoretical models to characterize
cell/primary dendrite spacings (λ1) as a function of growth rate (V ), temperature gradients (G)

and alloy composition (Co) during steady-state growth conditions. Under the high velocity
regime, the results predicted by these two theories differ only by a constant. The equations
representing these two theories can be expressed, respectively, as:

λ1 = 2.83[m(k − 1)D�]0.25C0.25
o V −0.25G−0.5 (Hunt model) (1)

λ1 = 4.3[m(k − 1)D�/k2]0.25C0.25
o V −0.25G−0.5 (Kurz and Fisher model) (2)

where � is the Gibbs–Thomson coefficient, m is the liquidus line slope, k is the solute partition
coefficient and D is the liquid solute diffusivity.

Trivedi [34] has modified the Hunt model to characterize the dendritic primary spacing λ1

as a function of G, V and Co which can be expressed as

λ1 = 2.83[m(k − 1)D�L]0.25C0.25
o V −0.25G−0.5 (Trivedi model) (3)

where L is a constant depending on the harmonic of perturbation. Hunt and Lu [23] have
proposed a numerical model to characterize the dendritic primary spacing λ1. The model
describes the steady state or unsteady state of an axial symmetric cell or dendrite and it can
be expressed as

λ′ = 0.077 98V ′(a−0.75)(V ′ − G ′)0.75G ′−0.6028 (Hunt and Lu model) (4)

where λ′ = λ�To/(�k), G ′ = G�k/(�To)
2, V ′ = V �k/(D�To), �To = mCo(k − 1)/k and

a = −1.131–0.1555 log G ′ − 0.007 589(log G ′)2.
Bouchard and Kirkaldy [35, 36] have also proposed a numerical model to characterize

the dendritic primary spacing (λ1) for unsteady-and steady-state heat flow conditions. A
heuristically derived steady-state formula, after modification, is recommended by these authors
for the purposes of predicting primary dendritic spacing in the unsteady regime and is given
by:

λ1 = a1

(
16C1/2

o Goε�D

(1 − k)mGV

)1/2

(Bouchard and Kirkaldy model) (5)

where Goε is a characteristic parameter (600 × 6 K cm−1) and a1 is the primary dendrite-
calibrating factor [36].
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1.2. Secondary dendrite arm spacings

Langer and Müller-Krumbhaar [26] have carried out a detailed numerical analysis of the
wavelength of instabilities along the sides of a dendrite and have predicted scaling law as
λ2/R = 2. Using the scaling law λ2/R = 2, the variation in λ2 for small Peclet number
conditions is given by Trivedi and Somboonsuk [37] as

λ2 = (8�DL/kV δTo)
0.5 (Trivedi and Somboonsuk model). (6)

For secondary dendrite arm spacings, Bouchard and Kirkaldy [36] derived an expression
which is very similar that of to Mullins and Sekerka [38, 39]. This expression is independent
of temperature gradient and is given by

λ2 = 2πa2

(
4�

Co(1 − k)2TF

(
D

V

)2)1/3

(Bouchard and Kirkaldy model) (7)

where a2 is the secondary dendrite-calibrating factor, which depends on alloy composition,
and TF is the fusion temperature of the solvent. The Bouchard and Kirkaldy model depends
additionally on empirical dimensionless calibration parameters a1 for λ1 and a2 for λ2, as
shown by equations (5) and (7). These authors have proposed different a1 values for different
alloys [36, 43].

1.3. Dendrite tip radius

As mentioned in the previous section, the Hunt model [32], the Kurz–Fisher model [33] and
the Trivedi model [34] have been applied to find the relationship between R as a function of V
and Co. According to the Hunt model [32],

R = [2�D/m(k − 1)]0.5C−0.5
o V −0.5, (8)

according to the Kurz–Fisher model [33],

R = 2π[�D/m(k − 1)]0.5C−0.5
o V −0.5 (9)

and according to the Trivedi model [34],

R = [2k�DL/m(k − 1)]0.5C−0.5
o V −0.5. (10)

As can be seen from equations (8)–(10) the theoretical models for dendritic tip radius, R, are
also very similar and the difference between them is a constant only.

1.4. Approaches for mushy zone depth

Mushy zone depth d is described as the distance between a dendrite tip and its root. For binary
alloy systems [57, 58] which cool without convection by using the constitutional undercooling
criterion, d is given as

d ∼= m(CE − CO)/G (11)

(the phase diagram can be seen in [19, 59]) when Co > CSE and CL = CE ; the temperature
required to return to this composition is the solidus temperature Ts and the temperature to
return to Ct (Ct

∼= Co) is the liquidus temperature TL. So, it is accepted that d is proportional
to difference between TL and TS. The undercooling, �To is written as

�To = −m�Co = TL − TS (12)

by using equations (11) and (12) the mushy zone depth d can be written as follows

d = �To

G
. (13)
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1.5. Selection of the stability constant

Langer and Müller-Krumbhaar [26] have found dendrite tip radius as a function of some system
parameters by using marginal stability criterion. The relationship is given by:

R =
[

IDdo

2σ ∗

]1/2

(14)

where σ ∗ is the stability constant, do is the capillarity length and ID is the solute diffusion
length, equal to

ID = 2D

V
. (15)

The solute capillary length is given as

do = γ

�Sk�To
(16)

where �To is the constitutional undercooling temperature (�To = mcO (1−k)

k ), �S is the
effective entropy change of melting per unit volume and � is the Gibbs–Thomson coefficient
(� = γ

�S ) [62]. If �To and � are substituted in equation (16) it can be written as
follows [60, 61]:

do = �

mcO(1 − k)
. (17)

If equation (14) is rearranged, the stability constant can be written as follows [60, 63]:

σ ∗ = D�

V R2mcO(1 − k)
. (18)

The physical meaning of the stability constant σ ∗ becomes apparent when considering a
limiting case and the undercooling vanishes. In this case the radius of curvature of the dendrite
becomes the radius of the tip curvature of a morphologically unstable sphere, R [64]. More
generally, R is the initial radius of the perturbed unstable sphere that is determined by the
particular experimental arrangement. For example, in Glicksman’s experiments [1], a capillary
was used to initiate the dendrite.

2. Experimental procedure

SCN–3.6 wt% ACE alloy was prepared from 99.9% pure SCN and 99.9% pure ACE supplied
by the Sigma-Aldrich Chemical Company. The specimen was contained in a glass cell made
from two glass cover slips (50 mm long, 24 mm wide and 0.05 mm thick). The slides were
stuck together with a silicone elastomer. The slides were placed with their largest surface in
the x–y plane and spaced a distance about 100–120 µm apart in the z direction to observe the
dendrite in the x–y plane (2D). Organic materials usually react with this type of glue. Before
filling the cell with alloy, the cell was annealed at 523 K to prevent reaction with the glue.

After filling the cell with alloy, the specimen cell was placed in the temperature gradient
stage. Details of the experimental system were given in [15]. When one side of the cell was
heated, the other side of the cell was kept cool with a water cooling system. The temperature
of the heater was controlled to be ±0.1 K with a Eurotherm 905S type controller. The
temperatures in the specimen were measured with four insulated K type thermocouples 50 µm
thick which were placed perpendicular to heat flow on the sample. The temperature gradient in
front of the solid–liquid interface on the specimen during the solidification was observed to be
constant.
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The SCN–3.6 wt% ACE alloy was solidified in a horizontal directional solidification
apparatus to directly observe the microstructures in situ using a transmission optical
microscope. The solidification of the SCN–3.6 wt% ACE alloy was carried out with a constant
temperature gradient (G = 5.7 K mm−1) at five different growth rates (V = 6.5–113 µm s−1)
and a constant growth rate (V = 6.5 µm s−1) at different temperature gradients (G =
3.5–5.7 K mm−1).

During the solidification, photographs of the microstructures were taken with an Olympus
camera placed on a transmission Olympus BH2 optical microscope by using ×5, ×10, and
×20 objectives and the photographs of a graticule (100 × 0.01 = 1 mm) were also taken with
same objectives.

2.1. Measurements of temperature gradient and growth rate

The specimen was slowly melted until the solid–liquid interface passed through the second
thermocouple by driving the specimen cell toward the heating system. When the solid–liquid
interface was between the second and third thermocouple, the synchronous motor was stopped
and the specimen was left to reach thermal equilibrium. After the specimen reached a steady
state, the solidification was started by driving the specimen toward the cooling system using a
synchronous motor [16, 17].

When the interface passed the distance between two thermocouples the solidification
time, �t , and temperatures difference between two thermocouples, �T , were recorded
simultaneously with a stopwatch and a Hewlett-Packard 34401-A multimeter, respectively. The
thermocouple positions and solidification microstructures were photographed with an Olympus
camera placed on an Olympus BH2 light optical microscope. Thus the distance between the
two thermocouples, �x , was measured accurately. The temperature gradient, G = (�T/�x),
and the growth rate, V = (�x/�t), were determined by using the values of �t,�T and �x .

2.2. Measurements of primary dendrite arm spacings, secondary dendrite arm spacings,
dendrite tip radius and mushy zone depth

The primary dendrite arm spacings (λ1) were obtained by measuring the distances between
the two nearest dendrite tips. The measurements of λ1 min (minimum), λ1 max (maximum) and
λ1 average (average) were made for five different growth rates in a constant temperature gradient
and five different temperature gradients a constant growth rate.

The relationship between λ1 min, λ1 max and λ1 average for steady growth were obtained to be
λ1 min < λ1 average < λ1 max and λ1 max � 2λ1 min. The secondary dendrite arm spacings (λ2)

were measured by averaging the distance between adjacent side branches of a primary dendrite
as a function of the distance from the dendrite tip. The dendrite tip radius (R) was measured
by fitting a suitable circle to the side of the dendrite tip. The mushy zone depth d is defined as
the average distance between the tip and root of the dendrites.

In the measurements of λ1, λ2, R and d , 70–75 values of λ1, λ2, R and d for each growth
rate and temperature gradient were measured to increase statistical sensitivity. Thus the values
of λ1, λ2, R and d as a function of V and G for SCN–3.6 wt% ACE system were measured.

3. Results and discussion

The SCN–3.6 wt% ACE system alloy was solidified with a constant G at five different growth
rates and a constant growth rate at five temperature gradients in order to experimentally
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Figure 1. (a) Dendrite tip splitting (this work). (b) Dendrite elimination (this work). (c) All
mechanisms: (1) growth of tertiary arm, (2) dendrite tip splitting, (3) dendrite elimination [61].

investigate the dependency of λ1, λ2, R and d on V and G, and to find the relationship
between them.

The spacing between dendrites which show orientated growth during the solidification
process varies: some of the spacing is narrow and some of the spacing is wide. The reason
for this is dendrite elimination, dendrite tip splitting and the growth of tertiary arms. These
mechanisms are shown in figure 1 [61]. To take these mechanisms into account, microstructure
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Figure 2. Solidification microstructures of SCN–3.6 wt% ACE alloy for constant V (6.5 µm s−1):
(a) G = 3.53 K mm−1, (b) G = 4.60 K mm−1, (c) 5.70 K mm−1 and for constant G (5.7 K mm−1):
(d) V = 6.5 µm s−1, (e) V = 34.2 µm s−1, (f) V = 113 µm s−1.

parameters were measured from approximately 75 digital photographs for each growth rate and
temperature gradient.

Typical microstructures of this alloy are shown in figure 2. The dependency of λ1, λ2, R
and d on V and G was obtained by linear regression analysis and the results are given in tables 1
and 2. Figures 3(a)–(d) present the experimental values of λ1, λ2, R and d as a function of V
and G, respectively.

As can be seen from figure 3(a), the values of λ1, λ2, R and d decrease as the temperature
gradient increases at a constant V and the average exponent values of λ1, λ2, R and d in the
directionally solidified SCN–3.6 wt% ACE alloy with a constant V at different temperature
gradients were found to be −0.50, −0.50, −0.50 and −0.49, respectively. In figure 3(b) and
table 1, the values of λ1, λ2, R and d decrease as the growth rate (V ) increases at a constant G
and the average exponent values of λ1, λ2, R and d in the directionally solidified SCN–3.6 wt%
ACE alloy with a constant G at different growth rates were found to be −0.25, −0.48, −0.50
and −0.25, respectively.

A number of experimental studies have been reported in the literature to characterize the
variations in λ1, λ2, R and d as a function of V , G [15]. The exponent values of λ1, λ2, R and
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Table 1. Experimental relationships for the directionally solidified SCN–3.6 wt% ACE alloy.

Experimental relationships (constant V )

λ1 (max) = k1G−0.50 k1 = 13.2 (µm0.5 K0.5) r1 = −0.995
λ1 (ave) = k2G−0.50 k2 = 9.7 (µm0.51 K0.49) r2 = −0.996
λ1 (min) = k3G−0.49 k3 = 11.1 (µm0.5 K0.5) r3 = −0.991
λ2 = k4G−0.50 k4 = 1.4 (µm0.5 K0.5) r4 = −0.995
R = k5G−0.50 k5 = 0.5 (µm0.5 K0.5) r5 = −0.998
d = k6G−0.49 k6 = 18.4 (µm0.51 K0.49) r6 = −0.992
λ2/Rave = 2.6

Experimental relationships (constant G)

λ1 (max) = k7V −0.25 k7 = 280.9 (µm1.25 sn−0.25) r7 = −0.987
λ1 (ave) = k8V −0.25 k8 = 240.1 (µm1.25 sn−0.25) r8 = −0.990
λ1 (min) = k9V −0.25 k9 = 199.3 (µm1.25 sn−0.25) r9 = −0.994
λ2 = k10V −0.48 k10 = 49.5 (µm1.48 sn−0.48) r10 = −0.962
R = k11V −0.50 k11 = 20.5 (µm1.50 sn−0.50) r11 = −0.958
d = k12V −0.25 k12 = 351.7 (µm1.25 sn−0.25) r12 = −0.984
λ2/Rave = 2.6

Table 2. The values of the stability constant, σ ∗ (SCN, succinonitrile; CAMP, camphor; ETH,
ethanol; PVA, pivalic acid).

Systems σ ∗ values Ref.

SCN–3.61 wt% ACE 0.018 This work
PVA 0.022 [47]
CBr4–7.9 wt% C2Cl6 0.022 [55]
CBr4–10.5 wt% C2Cl6 0.019 [55]
PVA–0.82 wt% ETH 0.055 [56]
SCN–5.5 mol% ACE 0.020 [70]
NH4Cl–70 wt% H2O 0.022 [71]
SCN 0.0195 [72]
CAMP 0.022 [73]
Cyclohexanol 0.027 [74]
NH4Cl-H2O 0.08 [75]
SCN-H2O 0.0156 [76]

d for SCN–3.6 wt% ACE alloy obtained in the present work are in good agreement with the
exponent values of λ1, λ2, R and d obtained in previous works [15–19, 51–56, 65, 66].

Comparisons of the experimentally obtained λ1 values in the present work with the values
of λ1 calculated using the Hunt [32], Kurz–Fisher [33], Trivedi [34], Hunt–Lu [23] and
Bouchard–Kirkaldy [35, 36] models are given in figures 4(a)–(c). The physical parameters
of SCN–3.6 wt% ACE alloy used in calculations of λ1, λ2, R and d with the theoretical models
are given in table A.1. As can be seen from figures 4(a) and (b), the calculated lines of λ1

with the Kurz–Fisher [33], Hunt [32] and Trivedi [34] models are much higher, slightly higher
and slightly lower, respectively, than our experimental values, and the calculated line of λ1

with the Hunt–Lu [23] model is slightly higher than the experimental values at a low growth
rate (especially growth rates ranging between 35 and 113 µm s−1); but these values of λ1 are
discrepancies from the experimental values at the lower growth rates (especially for growth
rates lower than 35 µm s−1).
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Figure 3. Variation of microstructure parameters according to solidification parameters:
(a) variation of primary dendrite arm spacings as a function of G at a constant V ; (b) variation
of microstructure parameters as a function of G at a constant V ; (c) variation of primary dendrite
arm spacing as a function of V at a constant G; (d) variation of microstructure parameters as a
function of V at a constant G .

It can be seen from figure 4(c) that the calculated values of λ1 with the Bouchard–
Kirkaldy [35] model are in good agreement with our experimental results for high growth
rates (especially 35–113 µm s−1) and are somewhat higher than the experimental values at
low growth rates (especially for growth rates lower than 40 µm s−1). It can be seen from
figures 3(a)–(c) that the values of λ1 obtained experimentally in the present work are in good
agreement with the calculated values of λ1 using the Trivedi [34] and Kurz–Fisher [33] models
for SCN–3.6 wt% ACE alloy.

The values of λ2 obtained experimentally in the present work as a function of growth
rate have been compared with the values of λ2 calculated with the Trivedi–Somboonsuk [37]
and Bouchard–Kirkaldy [35, 36] models, and the comparisons are given in figures 5(a) and
(b). As can be seen from figure 5(a), the calculated lines of λ2 from the Trivedi–Somboonsuk
model [37] as a function of (CoV )−0.5 are slightly lower than our experimental values and the
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Figure 4. Comparison of experimental and theoretical λ1 values as a function of V at a constant G
for SCN–3.6 wt% ACE alloy.

calculated lines of λ2 with the Bouchard–Kirkaldy model [35, 36] for SCN–3.6 wt% ACE alloy
as a function of C−0.33

o V −0.67 are slightly higher than the our experimental values.
Figure 5(c) shows comparisons of the experimentally obtained R values as a function

of (CoV )−0.5 in a constant temperature gradient with the values of R calculated from the
Hunt [32], the Kurz–Fisher [33] and the Trivedi [34] models. It can be seen from figure 5(c)
that the calculated lines of R with the Kurz–Fisher model [31] are in good agreement with our
experimental values, the calculated lines of R with Trivedi model [34] are slightly lower than
our experimental results and the calculated lines of R with the Hunt model [32] are much lower
than our experimental values.

The variation of d with G is shown in figure 3(b). It can be seen that an increase in
G produces a decrease in d . A regression analysis gives the proportionality equation as
d = k6G−49. An increase in V also produces a decrease in d . As shown in figure 3(d) and
table 1, d varies with V in the same manner as λ1 varies with V . Thus, we can describe the
relationship between d and V by a linear regression analysis as d = k12V −0.25.
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Figure 5. Comparison of experimental and theoretical values for (a) secondary dendrite arm spacing
λ2 as a function of V −0.5, (b) secondary dendrite arm spacing λ2 as a function of V −0.67, (c) dendrite
tip radius R as a function of V −0.5 and (d) mushy zone depth d as a function of G for SCN–3.6 wt%
ACE alloys.

A comparison of the experimentally obtained values for mushy zone depth d as an
inverse function of G in the present work with the calculated d values using the Rutter–
Chalmers [57, 58] model is given in figure 5(d) and the calculated line of d with the Rutter–
Chalmers [57, 58] model is in good agreement at high experimental G (4.60–5.70) values.

The d values were found to be between 0.10 and 0.27 mm depending on G and V for
SCN–3.6 wt% ACE organic alloy. The values of d in this work were slightly lower than the
values (0.22–1.29 mm) measured by Çadırlı et al [15] for different succinonitrile–salol alloys.
Also, the experimental d values were somewhat lower than the d values (38 mm), (7.7–28 mm)
and (1.4–29.4 mm) obtained by Clyne [67], Tewari et al [68] and Gündüz and Çadırlı [19],
respectively, for different metallic alloy systems.

The average value of λ2/R for SCN–3.6 wt% ACE alloy is given in table 1 and the average
value of λ2/R is found to be 2.6. The values of λ2/R for undercooled dendrites were estimated
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Figure 6. Comparison of λ2/R values as a function of growth rate obtained in the present work
with the theoretical and previous experimental works.

to be 2.1 by Langer and Müller-Krumbhaar [26]. As can be seen from figure 6, the average
value of λ2/R obtained in the present work for SCN–3.6 wt% ACE alloys is in good agreement
with the value of λ2/R estimated by Langer and Müller-Krumbhaar [26].

A comparison of λ2/R values obtained in the present work with the previous experimental
works [16, 17, 37, 54, 55, 69, 70] is also given in figure 6. The average value of λ2/R for
SCN–3.6 wt% ACE alloys obtained in the present work is in good agreement with the values
of λ2/R for different alloys obtained by previous workers.

The values of the stability constant σ ∗ calculated from equation (18) and calculated values
in this work and available values in the literature are shown in table 2(b). The value of σ ∗
is in good agreement with the values of σ ∗ for different alloy systems obtained by previous
workers [47, 55, 71–76]. The value of σ ∗ = 0.018 in this work is very close to the values of
0.022, 0.019, 0.022, 0.020 and 0.020 obtained by Glicksman and Singh [47], Seetharaman et al
[55], Hansen et al [71], Huang and Glicksman [72] and Somboonsuk et al [73], respectively.

4. Conclusions

SCN–3.6 wt% ACE alloys were unidirectionally solidified with a constant V (6.5 µm s−1) over
a wide range of G (3.5–5.7 K mm−1) and with a constant G (5.7 K mm−1) over a wide range of
V (6.5–113 µm s−1). The microstructural features observed for the microstructural parameters
(λ1, λ2, R, d) depend on the solidification parameters (G, V ). The obtained results can be
summarized as follows:

(1) Our experimental observations show that the values of λ1, λ2, R and d decrease as G
and V increase. The relationship between the microstructure parameters (λ1, λ2, R and
d) and the solidification parameters (G and V ) with a constant solute composition have
been obtained to be λ1 (ave) = k2G−0.50, λ2 = k4G−0.50, R = k5G−0.50, d = k6G−0.49,
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λ1 (ave) = k8V −0.25, λ2 = k10V −0.48, R = k11V −0.50, d = k12V −0.25. These exponent
values show that the dependency of λ1 and d on G is stronger than on V , and also the
dependences of λ2, R on V are stronger than those of λ1 and d .

(2) From the comparison, it can be seen that the average exponent values of λ1, λ2 and R are
in good agreement with the corresponding theoretical exponent values.

(3) The values of λ1, λ2, R and d for directionally solidified SCN–3.6 wt% ACE alloys
with a constant V and different G or with a constant G at different V measured
in present work have been compared with the calculated values of λ1, λ2, R and d
from the Kurz–Fisher [33], Trivedi [34], Bouchard–Kirkaldy [35, 36], Hunt–Lu [23],
Trivedi–Somboonsuk [37] and Rutter–Chalmers [57, 58] models, and it was seen that the
experimental results are mostly in good agreement with the calculated values from the
these models.

(4) Langer and Müller-Krumbhaar [26] have predicted the values of λ2/R to be 2.1. In the
present work, the average value of λ2/R for SCN–3.6 wt% ACE alloys was found to be
2.55.

(5) The value of the stability constant σ ∗ in this work is in good agreement with the values of
σ ∗ for different alloys obtained by previous workers [47, 55, 70–76].

Appendix.

Table A.1. The physical constants for SCN–ACE alloy.

Liquidus slope (m) 3.02 (K/wt%) or 0.302 × 103 (K mol−1 fr−1) [77]
Liquid diffusion coefficient (D) 12.7 × 102 µm2 s−1 [77]
Equilibrium partition coefficient (k) 0.1 [77]
The Gibbs–Thomson coefficient (�) 6.4 × 10−2 (K µm) [77]
Equilibrium melting point of SCN (Te) 330 K [77]
The harmonic perturbations 10 mJ m−2 [34]
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[62] Bayender B, Maraslı N, Çadırlı E, Şişman H and Gündüz M 1998 Solid–liquid surface energy of pivalic acid J.

Cryst. Growth 194 119–24
[63] Billia B and Trivedi R 1993 Pattern formation in crystal growth Handbook of Crystal Growth ed D T J Hurle

(Amsterdam: Elsevier Science Publishers B.V.) pp 1026–46
[64] Pines V, Chait A and Zlatkowski M 1997 Dynamic scaling in dendritic growth: significance of the initial nucleus

size J. Cryst. Growth 182 219–26
[65] Esaka H and Kurz W 1985 Columnar dendrite growth: experiments on tip growth J. Cryst. Growth 72 578–84
[66] Cattaneo C A, Evequoz O P and Bertorello H R 1994 Cellular and dendritic solidification in succinonitrile–water

system Scr. Metall. 31 461–6
[67] Clyne T W 1984 Modelling of heat flow in solidification Mater. Sci. Eng. 65 111–24
[68] Tewari S N, Shah R and Song H 1994 Effect of magnetic field on the microstructure Metall. Trans. A 25 1535–44
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